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Summary

My research interest is concerned with applied mathematics and nonlinear partial dif-

ferential equations. Our work is focused Cauchy problems, typically with periodic on

boundary conditions or in “the whole” Rn. Typically well-posedness results hold a priori

only for short time intervals. A basic problem is to establish whether such intervals can

be taken of arbitrary length. When it is not the case, one expects to find a maximal

existence time T ∗ <∞ and some spatial norms of the solution such that ‖u(t, ·)‖ is finite

for t ∈ (0, T ∗) and becomes unbounded as t ↑ T ∗. In our works we address such global

existence versus blowup issues. Our goal is to provide necessary or sufficient conditions

(or both), for the initial data u0(x), guaranteeing that the lifespan time T ∗ of the solution

arising from u0 is finite or not.

We study two kinds of equations: nonlinear parabolic equations and a class of dispersive

wave equations (including, e.g. Camassa-Holm, Degasperis-Procesi, shallow water, rod

equation, b family of equations).

A model case: The nonlinear heat equation

As a model case for nonlinear heat equations we considered the following equation with

cubic nonlinearity: {
∂tu = ∆u+ u3 x ∈ R3 t ∈ [0, T ]

u(0, x) = u0(x),
(0.1)

where 0 < T ≤ ∞ and u = u(x, t) is a real valued function of x ∈ R3 and t ≥ 0. It is

convenient to rewrite (0.1) in the equivalent integral formulation

(0.2) u(t, x) = u(t) = et∆u0(x) +

∫ t

0
e(t−τ)∆u3(τ, x) dτ.

This equation shares with the Navier-Stokes equation the same translation and dilatation

invariance, i.e., if u(x, t) is a solution of (0.1), or Navier-Stokes problem, so are λu(λx, λ2t),

with λ > 0 and u(x − x0, t − τ) for x0 ∈ R, τ ≥ 0. The initial condition is modified

accordingly. Our interest is to work in Banach spaces invariant with respect to this

scaling. For the initial data, the only Lebesgue space invariant under this scaling is

L3(R3). F. Weissler [20] showed that the Cauchy problem for (0.1) is locally well-posed

in Lp(R), for p ≥ 3, while E. Terraneo [19] proved a non-uniqueness result for mild

solutions of (0.1) which take values in L3(R3). We utilize the homogeneous Besov spaces

Ḃ−σ,∞q (R3) ⊂ L3(R), where 3 < q < 9, σ = 1 − 3
q . Such homogeneous Besov spaces are

invariant under this scaling. We first slightly extend a result of Y. Meyer in [14], showing
1
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that if u0 is small enough in Ḃ−σ,∞q (R3), then there is global existence of the solution u(x, t)

of ( 0.1) in C([0,+∞[; Ḃ−σ,∞q (R3)). This relies on the application of Kato’s pertubative

method [11]. Conversely, inspired by the article of Mongomery-Smith [15], we prove ill-

posedness for Ḃ−σ,∞q (R3), where q > 9. Also we show norm inflation phenomena of the

solution for some initial data, more precisely, we prove that for all δ > 0 there exists

an initial data u0 with ‖u0‖B−1
∞,∞

≤ δ such that the corresponding solution u satisfies

‖u(t)‖B−1
∞,∞
≥ 1/δ, for some t < δ. This is in the same spirit as Bourgain and Pavlović [4]

on norm inflation for solutions of the Navier–Stokes equation.

On permanent and breaking waves in hyperelastic rods and rings

In this part, we work on a class of dispersive wave equations. In particular, we study

the solutions of the Cauchy problem for the periodic rod equation written as follows:

(0.3)

ut + γuux = −∂xp ∗
(

3− γ
2

u2 +
γ

2
u2
x

)
, t ∈ (0, T ), x ∈ S,

u(0, x) = u0(x).

with S = R/Z, the unit circle. The function p in (0.3) is the kernel of the convolution

operator (1− ∂2
x)−1. It is the continuous 1-periodic function given by

(0.4) p(x) =
cosh(x− [x]− 1/2)

2 sinh(1/2)
,

where [·] denotes the integer part. A first physical motivation comes from the study of

the response of hyper-elastic rings under the action of an initial radial stretch. As the

nonlinear dispersive waves propagating inside it could eventually lead to cracks, an impor-

tant problem is the determination of conditions that must be fulfilled in order to prevent

their formation. A second reason for studying periodic solutions is that periodic waves

spontaneously arise also in hyper-elastic rods: indeed, it has been recently observed that

the solitary waves propagating inside an ideally infinite length rod can suddenly feature

a transition into waves with finite period as their amplitude increases, see [7]. Our third

motivation comes from the study of shallow water waves inside channels. Indeed, the

Camassa–Holm equation (at least in the dispertionless case) is a particular case, corre-

sponding to γ = 1, of the rod equation above: if the motion of small amplitude waves is

usually modeled by the KdV equation, larger amplitude waves, and in particular breaking

waves, are more accurately described by the Camassa–Holm equation. In fact, both the

KdV and the Camassa–Holm equation can be rigorously derived as an asymptotic model

from the free surface Euler equations for irrotational inviscid flows.

In [2], We prove that the only global strong solution of the periodic rod equation van-

ishing in at least one point (t0, x0) ∈ R+ × S is the identically zero solution. Our analysis

relies on the application of new local-in-space blowup criteria: we establish that if |γ| is

not too small, then there exists a constant βγ > 0 such that if

(0.5) u′0(x0) > βγ |u0(x0)| if γ < 0, or u′0(x0) < −βγ |u0(x0)| if γ > 0
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in at least one point x0 ∈ S, then the solution arising from u0 ∈ Hs(S) must blow up in

finite time. More precisely, the following upper bound estimate for T ∗ holds,

(0.6) T ∗ ≤ 2

γ
√
u′0(x0)2 − β2

γu0(x0)2

and, for some x(t) ∈ S, the blow up rate is

ux(t, x(t)) ∼ − 2

γ(T ∗ − t)
as t→ T ∗.

An analogue but weaker result was recently established in a previous paper [1], that dealt

with non-periodic solutions on the whole real line with vanishing boundary conditions as

x→∞.

Blowup for the generalized hyper-elastic rod equation

The next equation that we addressed is the nonlinear dispersive wave equation on the

real line,

(0.7)

ut + f ′(u)ux + ∂xp ∗
[
g(u) + f ′′(u)

2 u2
x

]
= 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.

Here p(x) = 1
2e
−|x|. The function p in (0.7) is the kernel of the convolution operator

(1−∂2
x)−1 on the real line. For appropriate choices of the functions f and g, Equation (0.7)

includes well known models, such as Dai’s equation for the study of vibrations inside elastic

rods or the Camassa–Holm equation modelling water wave propagation in shallow water.

When f(u) = uQ+1

Q+1 and g(u) = κu+ Q2+3Q
2(Q+1)u

Q+1 one recovers from (0.7) another class of

equations with interesting mathematical properties, studied in [10]. In [3], our purpose is

to establish a new blowup criterion for equation (0.7), that is both more natural and more

general than earlier blowup criteria. In particular we can handle more general boundary

conditions, encompassing also the case of solutions not necessarily vanishing at infinity.

We are also able to cover the case f(u) = u2 and g(u) = κu+ u2(Camassa-Holm equation

with dispersion). Contrary to previously known blowup criteria, like those in [6, 13, 21],

our criterion has the specific feature of being purely local in the space variable: indeed

our blowup condition only involves the values of u0(x0) and u′0(x0) in a single point x0 of

the real line. Under appropriate conditions on the functions f and g, provided the initial

datum u0 ∈ Hs (s > 3/2), satisfies

∃x0 ∈ R such that u′0(x0) < −β
∣∣u0(x0)− c

∣∣,
where β and c are two real constants depending on the shape of the functions f and g,

then the solution arising from u0 ∈ Hs(R) must blow up in finite time. In this case we

get an estimate of the blowup time of the form:

(0.8) T ∗ ≤ 4

γ

√
4u′0(x0)2 −

(√
1± 8K2 − 1

)2(
u0(x0)− c

)2 .
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Blowup for b-Family of Equations

A last issue that we considered is the Cauchy problem for the class of b-family equations.

(0.9)


ut + uux + ∂xp ∗

[
b
2u

2 +
(

3−b
2

)
u2
x

]
= 0, x ∈ S, t > 0,

u(x, 0) = u0(x), x ∈ S
u(t, x) = u(t, x+ 1) t ≥ 0,

Here p(x) is as in (0.4). Here b is a real parameter, and u(x, t) is the velocity of the

fluid on the torus S. The b-family equation can be derived as a family of asymptotically

equivalent shallow water wave equations that emerges at quadratic-order accuracy for any

b 6= 1 by an appropriate Kodama transformation [8, 9]. Again, when b = 2 and b = 3,

(0.9) became (C-H) and (D-P) respectively. These values are the only values for which

(0.9) is completely integrable. The Cauchy problem for the b-family equations is locally

well posed in the Sobolev space Hs for any s > 3
2 , see [16, 18]. In fact, it is proved in

[18], that maximal lifespan of the solution of (0.9) may be chosen independently of s.

We focus on blow-up criteria as well as on estimates about the lifespan of the solution.

The blow-up criteria are usually non-local with respect to space. Thus our contribution

provides a sufficient, local condition for the lifespan to be bounded. Our result reads as

follows: Let 1.0012 ≈ α0 ≤ b ≤ 3. There is βb > 0, such that if u0 ∈ Hs(S), with s > 3
2 ,

satisfies

(0.10) u′0(x0) < −βb |u0(x0)|

in at least one point x0 ∈ S, then the solution arising u0 ∈ Hs(S) must blow-up in finite

time. Notice that in earlier papers blowup results involved more stringent conditions on

the parameter b. Our technical restriction b ≥ α0 is indeed very close to the expected

physical condition b > 1. As in the previous section, we provide explicit estimates on T ∗.

Our analysis includes estimates and a numerical computations of βb.

1. Plans for future research

We present two research problems. The first one is closely related to a conjecture on

the well–posedness of the cubic heat equation inspired by our previous work. The second

is a work in progress.

Well-posedness for the cubic heat equation.

(1) With respect to equation (0.1), consider a Banach space X such that S(R3) ⊂
X ⊂ S ′(R3) with continous injections. We suppose that ‖·‖X is invariant with

respect to the same scaling of L3(R3). Also we assume that u0 ∈ S(R3), such that

‖u0‖X < ε. By Meyer [14] and our prolongation, we know that if X = L3(R3), or

X = Ḃ−σ,∞q (R3), where 3 < q < 9, σ = 1− 3
9 and if ε is sufficiently small then the

Cauchy problem, then (0.1) admits a global solution. What is the largest possible

scaling invariant space X where the same conclusion does hold ?

Notice that in the case of the Navier-Stokes equations the answer to this question

is known, and the maximal space is provided by the Koch-Tataru space [12]. But

the problem for the cubic heat equation is still open. In our research, we have
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two partial conclusions. If this maximal Banach space X does exist, then it must

verify the following assertions:

•
⋃

3<q<9

Ḃ−σ,∞q (R3) ⊂ X.

• Ḃ−
2
3
,∞

9 (R3) 6⊆ X.

We conjecture that the maximal space X can be defined by suitably modifying the

Koch-Tataru space in order to include L3
loc-functions. However, at the moment we

do not know how to prove the relevant tri-linear estimates in such space.

(2) When u0 ∈ Ḃ−σ,∞q , with q > 9 or Ḃ
− 2

3
,k

q , with k > 3, the solution of (0.1) arising

from u0, blows up in finite time. Observing the Sobolev embeddings

L3 = Ḃ0,3
3 ⊂ Ḃ−

2
3
,3

9 ⊂ Ḃ−
2
3
,∞

9 ,

another interesting open problem appears: is it possible to get the global well-

posedness putting a smallness condition on u0 in the space X = Ḃ
− 2

3
,∞

9 ? One

might speculate that in Ḃ−σ,∞9 we have ill-posedness and try to build u0 such that,

no matter how small is u0 in Ḃ
− 2

3
,∞

9 , the solution u arising of u0 blows up.

Periodic waves i generalized rods In (0.7), we did not investigate the periodic case.

It seems hopeful that adapting our methods could be effective in the case of the torus S1.

In fact, we expect that in the periodic case the results cold be stronger than in the case

of the whole real line.

New challenges. I intend to continue studying Nonlinear Analysis and in particular

in incompressible fluids. Here are a few of the questions on which I would like to work in

the near future.

• With Professor Alvarez Samaniego, we are investigating the following Cauchy prob-

lem:

(1.1) vt + vvx + vxxx + η(Hvx +Hvxxx) = 0, v(·, 0) = φ(·),

where H denote the Hilbert transform and η ≥ 0. The equation (1.1) was proposed

by Ostrovsky to describe the radiational instability of long waves in a stratified

shear flow [17]. Mr. Alvarez in his Thesis, developed the local and global theory

in Hs, with s > 1. He also got results in the space Fr,s(R) = Hs(R) ∩ L2
r(R),

where L2
r is a weighted L2-space. We would like to obtain similar results in the

Besov spaces of the form Bs
2,r(R). The motivation is to improve on the regularity

index s. Moreover, we would like to better describe the persistence properties of

solutions in weighted spaces, in order to have a sharp description on the behavior

of solutions at the spatial infinity.
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